Aparate de sloturi cu 3 role

2. Cazul B numere diferite de stopuri si distributii diferite de simboluri pe role

          2.8  Un anumit simbol cel putin de doua ori

            Probabilitatea acestui eveniment este , unde  sunt probabilitatile de baza ale aparitiei acelui simbol pe role respectiv. In cazul particular in care doua din cele trei role au acelasi numar de stopuri si aceleasi distributii de simboluri, probabilitatea evenimentului masurat este , undee  este probabilitatea de baza a aparitiei acelui simbol pe una din cele doua role similare, iar  este probabilitatea de baza a aparitiei acelui simbol pe ce-a de-a treia rola. Aceasta formula particulara genereaza urmatoarele tabele de valori, unde valorile probabilitatilor de baza sunt listate cu increment de 0.005, de la 0.005 la 0.100, iar fiecare tabel listeaza sapte valori ale lui .

                Tabele de valori ale probabilitatii de aparitie a unui anumit simbol de cel putin doua ori pe o linie de castig

             Tabel 1:   de la 0.005 la 0.035

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.005

0.00007475

0.0001245

0.00017425

0.000224

0.00027375

0.0003235

0.00037325

0.01

0.000199

0.000298

0.000397

0.000496

0.000595

0.000694

0.000793

0.015

0.00037275

0.0005205

0.00066825

0.000816

0.00096375

0.0011115

0.00125925

0.02

0.000596

0.000792

0.000988

0.001184

0.00138

0.001576

0.001772

0.025

0.00086875

0.0011125

0.00135625

0.0016

0.00184375

0.0020875

0.00233125

0.03

0.001191

0.001482

0.001773

0.002064

0.002355

0.002646

0.002937

0.035

0.00156275

0.0019005

0.00223825

0.002576

0.00291375

0.0032515

0.00358925

0.04

0.001984

0.002368

0.002752

0.003136

0.00352

0.003904

0.004288

0.045

0.00245475

0.0028845

0.00331425

0.003744

0.00417375

0.0046035

0.00503325

0.05

0.002975

0.00345

0.003925

0.0044

0.004875

0.00535

0.005825

0.055

0.00354475

0.0040645

0.00458425

0.005104

0.00562375

0.0061435

0.00666325

0.06

0.004164

0.004728

0.005292

0.005856

0.00642

0.006984

0.007548

0.065

0.00483275

0.0054405

0.00604825

0.006656

0.00726375

0.0078715

0.00847925

0.07

0.005551

0.006202

0.006853

0.007504

0.008155

0.008806

0.009457

0.075

0.00631875

0.0070125

0.00770625

0.0084

0.00909375

0.0097875

0.01048125

0.08

0.007136

0.007872

0.008608

0.009344

0.01008

0.010816

0.011552

0.085

0.00800275

0.0087805

0.00955825

0.010336

0.01111375

0.0118915

0.01266925

0.09

0.008919

0.009738

0.010557

0.011376

0.012195

0.013014

0.013833

0.095

0.00988475

0.0107445

0.01160425

0.012464

0.01332375

0.0141835

0.01504325

0.1

0.0109

0.0118

0.0127

0.0136

0.0145

0.0154

0.0163

               Tabel 2:   de la 0.040 la 0.070

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.005

0.000423

0.00047275

0.0005225

0.00057225

0.000622

0.00067175

0.0007215

0.01

0.000892

0.000991

0.00109

0.001189

0.001288

0.001387

0.001486

0.015

0.001407

0.00155475

0.0017025

0.00185025

0.001998

0.00214575

0.0022935

0.02

0.001968

0.002164

0.00236

0.002556

0.002752

0.002948

0.003144

0.025

0.002575

0.00281875

0.0030625

0.00330625

0.00355

0.00379375

0.0040375

0.03

0.003228

0.003519

0.00381

0.004101

0.004392

0.004683

0.004974

0.035

0.003927

0.00426475

0.0046025

0.00494025

0.005278

0.00561575

0.0059535

0.04

0.004672

0.005056

0.00544

0.005824

0.006208

0.006592

0.006976

0.045

0.005463

0.00589275

0.0063225

0.00675225

0.007182

0.00761175

0.0080415

0.05

0.0063

0.006775

0.00725

0.007725

0.0082

0.008675

0.00915

0.055

0.007183

0.00770275

0.0082225

0.00874225

0.009262

0.00978175

0.0103015

0.06

0.008112

0.008676

0.00924

0.009804

0.010368

0.010932

0.011496

0.065

0.009087

0.00969475

0.0103025

0.01091025

0.011518

0.01212575

0.0127335

0.07

0.010108

0.010759

0.01141

0.012061

0.012712

0.013363

0.014014

0.075

0.011175

0.01186875

0.0125625

0.01325625

0.01395

0.01464375

0.0153375

0.08

0.012288

0.013024

0.01376

0.014496

0.015232

0.015968

0.016704

0.085

0.013447

0.01422475

0.0150025

0.01578025

0.016558

0.01733575

0.0181135

0.09

0.014652

0.015471

0.01629

0.017109

0.017928

0.018747

0.019566

0.095

0.015903

0.01676275

0.0176225

0.01848225

0.019342

0.02020175

0.0210615

0.1

0.0172

0.0181

0.019

0.0199

0.0208

0.0217

0.0226

                Tabel 3:   de la 0.075 la 0.105

0.075

0.080

0.085

0.090

0.095

0.100

0.105

0.005

0.00077125

0.000821

0.00087075

0.0009205

0.00097025

0.00102

0.00106975

0.01

0.001585

0.001684

0.001783

0.001882

0.001981

0.00208

0.002179

0.015

0.00244125

0.002589

0.00273675

0.0028845

0.00303225

0.00318

0.00332775

0.02

0.00334

0.003536

0.003732

0.003928

0.004124

0.00432

0.004516

0.025

0.00428125

0.004525

0.00476875

0.0050125

0.00525625

0.0055

0.00574375

0.03

0.005265

0.005556

0.005847

0.006138

0.006429

0.00672

0.007011

0.035

0.00629125

0.006629

0.00696675

0.0073045

0.00764225

0.00798

0.00831775

0.04

0.00736

0.007744

0.008128

0.008512

0.008896

0.00928

0.009664

0.045

0.00847125

0.008901

0.00933075

0.0097605

0.01019025

0.01062

0.01104975

0.05

0.009625

0.0101

0.010575

0.01105

0.011525

0.012

0.012475

0.055

0.01082125

0.011341

0.01186075

0.0123805

0.01290025

0.01342

0.01393975

0.06

0.01206

0.012624

0.013188

0.013752

0.014316

0.01488

0.015444

0.065

0.01334125

0.013949

0.01455675

0.0151645

0.01577225

0.01638

0.01698775

0.07

0.014665

0.015316

0.015967

0.016618

0.017269

0.01792

0.018571

0.075

0.01603125

0.016725

0.01741875

0.0181125

0.01880625

0.0195

0.02019375

0.08

0.01744

0.018176

0.018912

0.019648

0.020384

0.02112

0.021856

0.085

0.01889125

0.019669

0.02044675

0.0212245

0.02200225

0.02278

0.02355775

0.09

0.020385

0.021204

0.022023

0.022842

0.023661

0.02448

0.025299

0.095

0.02192125

0.022781

0.02364075

0.0245005

0.02536025

0.02622

0.02707975

0.1

0.0235

0.0244

0.0253

0.0262

0.0271

0.028

0.0289

             Exemplu de utilizare a tabelelor:

            Gasiti probabilitatea de aparitie a cel putin doua cirese pe o linie de castig a unui aparat de sloturi cu 3 role, avand 65, 65, 68 stopuri pe rolele 1, 2, 3 respectiv si 2, 2, 1 cirese pe aceste role respectiv.

            Suntem in cazul particular a doua role similare (1 si 2).  si . Urmarim Tabelul 1 si cautam la intersectia coloanei  cu linia , unde gasim probabilitatea 0.002646. Putem lua 0.0025 = 0.25% ca o aproximare a probabilitatii cautate. Pentru un rezultat exact, trebuie aplicata direct formula care a generat tabelele.