Aparate de sloturi cu 3 role

2. Cazul B numere diferite de stopuri si distributii diferite de simboluri pe role

            2.3  Evenimentul   Un anumit simbol de exect doua ori

             Probabilitatea lui  este , unde  sunt probabilitatile de baza ale aparitiei acelui simbol pe role respectiv. In cazul particular in care doua din cele trei role au acelasi numar de stopuri si aceleasi distributii de simboluri, probabilitatea evenimentului  este , unde  este probabilitatea de baza a aparitiei acelui simbol pe una din cele doua role similare, iar  este probabilitatea de baza a aparitiei acelui simbol pe ce-a de-a treia rola. Aceasta formula particulara genereaza urmatoarele tabele de valori, unde valorile probabilitatilor de baza sunt listate cu increment de 0.005, de la 0.005 la 0.100, iar fiecare tabel listeaza sapte valori ale lui .

                Tabele de valori ale probabilitatii de aparitie a unui anumit simbol de doua ori pe o linie de castig

             Tabel 1:   de la 0.005 la 0.035

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.005

0.000074625

0.00012425

0.000173875

0.0002235

0.000273125

0.00032275

0.000372375

0.01

0.0001985

0.000297

0.0003955

0.000494

0.0005925

0.000691

0.0007895

0.015

0.000371625

0.00051825

0.000664875

0.0008115

0.000958125

0.00110475

0.001251375

0.02

0.000594

0.000788

0.000982

0.001176

0.00137

0.001564

0.001758

0.025

0.000865625

0.00110625

0.001346875

0.0015875

0.001828125

0.00206875

0.002309375

0.03

0.0011865

0.001473

0.0017595

0.002046

0.0023325

0.002619

0.0029055

0.035

0.001556625

0.00188825

0.002219875

0.0025515

0.002883125

0.00321475

0.003546375

0.04

0.001976

0.002352

0.002728

0.003104

0.00348

0.003856

0.004232

0.045

0.002444625

0.00286425

0.003283875

0.0037035

0.004123125

0.00454275

0.004962375

0.05

0.0029625

0.003425

0.0038875

0.00435

0.0048125

0.005275

0.0057375

0.055

0.003529625

0.00403425

0.004538875

0.0050435

0.005548125

0.00605275

0.006557375

0.06

0.004146

0.004692

0.005238

0.005784

0.00633

0.006876

0.007422

0.065

0.004811625

0.00539825

0.005984875

0.0065715

0.007158125

0.00774475

0.008331375

0.07

0.0055265

0.006153

0.0067795

0.007406

0.0080325

0.008659

0.0092855

0.075

0.006290625

0.00695625

0.007621875

0.0082875

0.008953125

0.00961875

0.010284375

0.08

0.007104

0.007808

0.008512

0.009216

0.00992

0.010624

0.011328

0.085

0.007966625

0.00870825

0.009449875

0.0101915

0.010933125

0.01167475

0.012416375

0.09

0.0088785

0.009657

0.0104355

0.011214

0.0119925

0.012771

0.0135495

0.095

0.009839625

0.01065425

0.011468875

0.0122835

0.013098125

0.01391275

0.014727375

0.1

0.01085

0.0117

0.01255

0.0134

0.01425

0.0151

0.01595

            Tabel 2:   de la 0.040 la 0.070

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.005

0.000422

0.000471625

0.00052125

0.000570875

0.0006205

0.000670125

0.00071975

0.01

0.000888

0.0009865

0.001085

0.0011835

0.001282

0.0013805

0.001479

0.015

0.001398

0.001544625

0.00169125

0.001837875

0.0019845

0.002131125

0.00227775

0.02

0.001952

0.002146

0.00234

0.002534

0.002728

0.002922

0.003116

0.025

0.00255

0.002790625

0.00303125

0.003271875

0.0035125

0.003753125

0.00399375

0.03

0.003192

0.0034785

0.003765

0.0040515

0.004338

0.0046245

0.004911

0.035

0.003878

0.004209625

0.00454125

0.004872875

0.0052045

0.005536125

0.00586775

0.04

0.004608

0.004984

0.00536

0.005736

0.006112

0.006488

0.006864

0.045

0.005382

0.005801625

0.00622125

0.006640875

0.0070605

0.007480125

0.00789975

0.05

0.0062

0.0066625

0.007125

0.0075875

0.00805

0.0085125

0.008975

0.055

0.007062

0.007566625

0.00807125

0.008575875

0.0090805

0.009585125

0.01008975

0.06

0.007968

0.008514

0.00906

0.009606

0.010152

0.010698

0.011244

0.065

0.008918

0.009504625

0.01009125

0.010677875

0.0112645

0.011851125

0.01243775

0.07

0.009912

0.0105385

0.011165

0.0117915

0.012418

0.0130445

0.013671

0.075

0.01095

0.011615625

0.01228125

0.012946875

0.0136125

0.014278125

0.01494375

0.08

0.012032

0.012736

0.01344

0.014144

0.014848

0.015552

0.016256

0.085

0.013158

0.013899625

0.01464125

0.015382875

0.0161245

0.016866125

0.01760775

0.09

0.014328

0.0151065

0.015885

0.0166635

0.017442

0.0182205

0.018999

0.095

0.015542

0.016356625

0.01717125

0.017985875

0.0188005

0.019615125

0.02042975

0.1

0.0168

0.01765

0.0185

0.01935

0.0202

0.02105

0.0219

                Table 3:   de la 0.075 la 0.105

0.075

0.080

0.085

0.090

0.095

0.100

0.105

0.005

0.000769375

0.000819

0.000868625

0.00091825

0.000967875

0.0010175

0.001067125

0.01

0.0015775

0.001676

0.0017745

0.001873

0.0019715

0.00207

0.0021685

0.015

0.002424375

0.002571

0.002717625

0.00286425

0.003010875

0.0031575

0.003304125

0.02

0.00331

0.003504

0.003698

0.003892

0.004086

0.00428

0.004474

0.025

0.004234375

0.004475

0.004715625

0.00495625

0.005196875

0.0054375

0.005678125

0.03

0.0051975

0.005484

0.0057705

0.006057

0.0063435

0.00663

0.0069165

0.035

0.006199375

0.006531

0.006862625

0.00719425

0.007525875

0.0078575

0.008189125

0.04

0.00724

0.007616

0.007992

0.008368

0.008744

0.00912

0.009496

0.045

0.008319375

0.008739

0.009158625

0.00957825

0.009997875

0.0104175

0.010837125

0.05

0.0094375

0.0099

0.0103625

0.010825

0.0112875

0.01175

0.0122125

0.055

0.010594375

0.011099

0.011603625

0.01210825

0.012612875

0.0131175

0.013622125

0.06

0.01179

0.012336

0.012882

0.013428

0.013974

0.01452

0.015066

0.065

0.013024375

0.013611

0.014197625

0.01478425

0.015370875

0.0159575

0.016544125

0.07

0.0142975

0.014924

0.0155505

0.016177

0.0168035

0.01743

0.0180565

0.075

0.015609375

0.016275

0.016940625

0.01760625

0.018271875

0.0189375

0.019603125

0.08

0.01696

0.017664

0.018368

0.019072

0.019776

0.02048

0.021184

0.085

0.018349375

0.019091

0.019832625

0.02057425

0.021315875

0.0220575

0.022799125

0.09

0.0197775

0.020556

0.0213345

0.022113

0.0228915

0.02367

0.0244485

0.095

0.021244375

0.022059

0.022873625

0.02368825

0.024502875

0.0253175

0.026132125

0.1

0.02275

0.0236

0.02445

0.0253

0.02615

0.027

0.02785

             Exemplu de utilizare a tabelelor:

            Gasiti probabilitatea de aparitie a doua cirese pe o linie de castig a unui aparat de sloturi cu 3 role, avand 72, 72, 72 stopuri pe rolele 1, 2, 3 si 4, 2, 2 cirese pe aceste role respectiv.

 Suntem in cazul particular a doua role similare (2 si 3).  si . Urmarim Tabelul 2 si cautam la intersectia coloanei  cu liniile  si . Gasim probabilitatile 0.003271875 si 0.0040515, care incadreaza probabilitatea cautata. Putem lua de exemplu 0.0036 = 0.36% ca aproximatie. Pentru un rezultat exact, trebuie aplicata direct formula care a generat tabelele.